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Summary. The potentials of the electromagnetic field in the Bloch gauge are used 
to obtain definitions for the multipole moment operators and for the operators 
expressing the electric and magnetic field of electrons acting on the nuclei of 
a molecule. Perturbation theory is employed to determine induced electronic 
moments and total electromagnetic field at the nuclei. A series of response tensors 
is defined to describe the contributions arising in non-uniform magnetic field and 
their origin dependence is studied. 
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1 Introduction 

A comprehensive theory is available to interpret the magnetic properties of a mol- 
ecule in a spatially uniform, time-independent, magnetic field [1, 2] within the 
assumption of linear response. Non-linear effects arising in the presence of high 
intensity fields have also been examined [3, 4]. 

Phenomenologies observed in a molecule in the presence of periodic electro- 
magnetic field associated with a monochromatic plane wave can be dealt with 
using suitable quantum mechanical approaches, e.g., propagator theory [5] and 
time-dependent perturbation theory 1-6, 7]. Within the quadrupole approximation, 
i.e., assuming that the magnetic field and the electric field gradient are uniform all 
over the molecular domain, a number of dynamic response tensors can be defined 
to rationalize the induced electromagnetic dipoles and fields [7]. To the next higher 
approximations, e.g., octupole and hexadecapole, one needs a convenient multipole 
expansion for the molecular interaction Hamiltonian. The problem of defining the 
set of electric multipole moments can be easily solved in the presence of static 
electric fields: it is customary to introduce electric multipoles traceless in any two 
tensor suffixes when static electric fields are studied [6]. 

* This paper is dedicated to Professor Werner Kutzelnigg on the occasion of his 60th birthday 
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According to Raab [8], this is no longer advisable for higher electric and 
magnetic multipoles in the case of time-dependent electromagnetic fields: the 
traceless moments beyond the quadrupole are unable to describe the general 
interaction Hamiltonian or even the classical radiation field [8]. As a matter of fact 
it is expedient to introduce a multipole expansion via proper definitions for the 
scalar and vector potentials, which explicitly appear in the interaction Hamil- 
tonian. 

The suitable form for the potentials has been first suggested by Bloch [9] and 
rediscovered from time to time [10-12]. Raab [8] has defined a set of magnetic 
susceptibilities, consistent with the interaction Hamiltonian a la Bloch, to describe 
the multipole moments induced in a molecule by non uniform time-dependent 
magnetic field. 

So far, little attention has been payed to electronic magnetic multipoles 
in molecules, with a few noticeable exceptions [13-17]. Nonetheless, it has 
been emphasized that higher magnetic multipoles make small, but non-negligible 
contributions to the nuclear magnetic shielding and to NMR chemical shift 
[10]. At very large distance, the magnetic field arising from an electronic 
current density, is merely due to the magnetic dipole of the charge distribution. 
At closer distance, however, significant contributions arise from higher magnetic 
multipoles. Accordingly, the local field acting upon a probe, i.e. a nucleus carrying 
an intrinsic magnetic moment, will contain terms beyond the electronic magnetic 
dipole, leading to a "pseudo-contact" contribution to the nuclear magnetic shield- 
ing E17, 10]. Therefore an analysis of magnetic shielding relative to a given nucleus 
in terms of magnetic multipoles of neighbouring groups may help rationalize 
the role played by different domains of the electron distribution in determining 
NMR chemical shifts. In order to deal with the pseudo-contact term, Buckingham 
and Stiles [10] have reported equations which contain multipole magnetic 
susceptibilities. 

The present paper sets out to extend Raab's method [8], reviewed in Sects. 
2 and 3, and to define a set of Hermitian magnetic multipole operators and 
associated (mixed) multipole susceptibilities. Another essential aim is that of 
discussing contributions, which arise from non-uniform magnetic field, to the 
electric and magnetic fields at the nuclei, induced by the perturbed electron cloud, 
see Sects. 4 and 5. Similar formulae are developed to account for contributions 
from higher multipoles to the optical rotatory power in Sect. 5. The origin 
dependence of the response tensors is examined in Sect. 6. It is shown that, allowing 
for the Bloch normalization [9] for the operators appearing in the interaction 
Hamiltonian, several advantages of notation are gained. The gauge transformation 
leading to the Bloch potentials is outlined in the Appendix. 

2 Molecule in non-uniform field 

Let us consider a closed-shell molecule, i.e., a system symmetric under time- 
reversal, with n electrons and N nuclei. We denote by - e ,  me, ri~, 
Pi~, li~ = e~arripp~r, for i = 1, 2 . . . . .  n, charge, mass, position coordinates, linear, 
and angular momentum of the i-th electron. The analogous quantities for the I-th 
nucleus are Z1e, MI ,  R ~ ,  etc. Sum over repeated Greek indices is implied all over 
the paper. 

In the presence of an external electromagnetic field, which, for simplicity, 
is represented by a monochromatic wave of frequency o~, the spinless interaction 
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Hamil tonian  for the electrons, within the Born -Oppenhe imer  approximat ion,  
is: 

(1) 

(2) 

H = Ho + V, V = H (~) + H (2), 

V = ~ I e  e e 2 A.2_e~il 
~=1 ~ Ai " pi + ~ pi " Ai + 2mec 2 t 

Ho= ~ [pi2 ~ Z,e 2 . eZ ] N N Z, Zje 2 
L2m~ Ir;ZR, I +½g,lr, UI +½~;~,I~-~--R-,I" i = 1  1 = 1  j #  • 

(3) 

In order  to get a mult ipole expansion of the interaction Hamil tonian,  we 
introduce the potentials of the electromagnetic field according to Bloch [9], see 
Appendix (we simplify the nota t ion  in this section, omitt ing the ~ index): 

A(r, t)~ = e~r~ [½B(0, t)~ + ½r~B(O, t)~ + ~r~r~B(O, t ) ~  + . . . ] ,  (4) 

q~(r, t) = -- r~ [E(0,  t)~ + ½raE(O, t)p~ + ~rpr~E(O, t)~p, + . . .  ] .  (5) 

The charge density and the current  density operators  for the electrons are 
defined, respectively: 

fi(r) = - e ~ 6(r - ri), (6) 
i = 1  

] ( r ) =  e 2me [ p i 6 ( r  - ri)  + 6 (r  - r i ) p i ] ,  (7) 
i=1 

and the first-order Hamil tonian  of a charge distribution is then given the form [9]: 

H'~)=fdzfidp-~fdz(J'A) 

= - ~ [e(0, t)~k~_~ . . . .  ~ . . ~ , ~  . . . .  
k=O 

+ B(0, t)~,~,_, . . . . . .  m ~ , ~  . . . .  , ] ,  (8) 

where the Hermit ian  tensor operators  of rank k + 1 for the electric and magnetic 
mult ipole moments  are defined according to Bloch [9]. The electric mult ipole 
moments  of the electron distribution are: 

# ~  = 

] , t ~ ,  - -  

. . .  

- - e  ~ ria , 
i = 1  

- ~ ( r ~ A ,  
i = 1  

e ~. (r~rpr~)i, 
6 1 = 1  

e 
(r~r~l • . .  r~k)i 

(k + 1)! i= i 

~ E ~  . . . . . .  , , '  
(9) 
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and the magnet ic  mult ipole moments ,  omit t ing contr ibut ions  f rom electron spin, 
are: 

e n 
-- ~= l li~, 

m~, 2meC i = 

e ~ (l~ra + ral~)~, 
m~  - 6mee i= 

e i (l~r~r~ + r~rfl~)i, 
16meC ~=~ 

m~p~ = 

o..  

m ~ . . .  ~k - 
k + 1 e 

(l,r~l. . . r,~ + r,~ . . . r~kl~) i 
(k + 2)! 2meci= 1 

•H (1) 
- ( 1 0 )  

I t  is easily shown that, whenever  two tensor  indices are repeated: 

m,,  = 0 = m,,p .... (11) 

etc. The  electronic magnet ic  mult ipoles (10) are unperturbed or permanent m o m e n t  
operators .  In  the presence of a vector  potent ia l  A(r, t), the canonical  m o m e n t u m  is 
replaced by the mechanical  m o m e n t u m :  

i i e P = p~ ~ H = ~ i ,  rr~ = Pl + - A t ,  ( 1 2 )  
i = 1  i = 1  C 

and the angular  m o m e n t u m  becomes: 

e ~  
L '  = L + - r i  x A~,  L = l i .  ( 1 3 )  

C i = l  i = 1  

According to Eqs. (4), (10) and (13), within the Bloch gauge [-9] for the vector  
potential ,  the opera tors  for per turbed magnet ic  mult ipole  m o m e n t s  become: 

t - d  m~ = m, + ~t~B(0, t)a + Z,p;r B(O, t)ra 

+ £~p;., B(0. t),~p + ~ ; . , ~  B(0. t)~e + . . - ,  

, -d pB(0, t)r + 16 : ':d B(0, t)~r 

5 -,t B(0, t ) .~ + • • • -4- ~ Z~ ; ~& 
t - d  - d  m~p~ = m~p~ + Z~;~B(0 ,  t)~ + ~ t).~ + Z~,~;/~ B(O, • • • , 

etc., where: 

- d  Z~p - -  e2 ~" (r2 6~p -- r~r~)i, 
4me c2 i= 1 

e 2 

6meC 2 ~, [ ( r2g~p-  r~r~)r,]i, 
i = 1  

e 2 

16meC2 ~ [(r~Z6~p- r~r~)r~r~]i, 
/ = 1  

e 2  ~ 2 

60meC2 [(rv 6~  -- r~r~)r~r~r~]i, 
i = 1  

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(2O) 
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etc. In these formulae a semicolon separates symmetric indices which can be freely 
permuted. 

3 Magnet i c  susceptibilities 

The diamagnetic contributions to the magnetic susceptibilities in the reference state 
[a) are defined: 

Z~ (a[ -d = z~ala), (21) 
d -d = Z,a;r l a ) ,  (22) Z,,a,r (al  

etc. The paramagnetic contributions are obtained via time-dependent perturbation 
theory I-7]. Let us consider an operator which is characterized by a perturbation 
expansion: 

T =  To + T~ + . . . ,  (23) 

where To does not depend explicitly on time and 7'1, etc., involving the perturba- 
tion, may be explicitly time-dependent. The expectation value of operator (23) in 
the perturbed electronic state is: 

( T ) a  = (alTola) + (al Z~la) + 2~ [ ~ ( a [Zo l j ) e xp ( -  i(Djat)Cja(t)[ , 
t . _ j ~ a  A 

(24) 

where 

1 [ H~I ) (j~H~l) a\lexp(i09~at). (25) 
Cja(t)  = h(09fa - 092) (J l  la)09ja + i ~t /_] 

Substituting for the operators (10) the paramagnetic contributions to the suscep- 
tibilities are obtained. They are: 

1 209j~ 
= ~ i - - -  2~((alm~lJ)( j lmpla))  

z~, p ( ~ )  -h J - o  09Jo _ 09 

= Z~,~,(09) --- Z~t~(09), (26) 

1 209j,, 
zPf lY( (A) )  = ~ j~a__ 09i2a -- 092 ~((a[m,]j)  (j[mar[a)) 

P 09 = Za~,,,(), (27) 

1 209ja 
z P f l Y b ( 0 9 )  = -~ j~a__ 09jZ~ -- 092 ~((a[m, lj) (j[rnar~la)) 

= Z~,~, ,(09), (28) 

1 209ja 

P 09 = Zr,~,,,p(), (29) 

1 209j,, 
zP¢.7~(09) = ~ ~,__ 09j~ _ 092 ~((alm,alj)  ( j lm~ la ) )  

= z ~ ,  ~p(09), (30) 
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where, owing to Eq. (11): 

Z p, pp (co) = 0 = zP~, ~ (co), (31) 

etc. In these formulae a comma separates groups of indices which can be permuted  
in the definition of the various susceptibilities, as each group refers to a given 
magnetic mult ipole (10). 

Total  dynamic susceptibilities could be defined so that: 

Z~p(co) = ~(P~(co) + ;t~d~, (32) 

d (33) z~,~(co) = z~,~(co) + z~p;, 

d Z~,p~(co) = X~,~(o)) + X~; ~ ~ Xpr~.~(co) (34) 

Z~p, r(co) = zPp, r(co) + z~d; P ~ Xr, ~P(CO), (35) 

1 6 ~ , d  X~p, ~(co) = zP~, r~(c°) + 9 z~r; ~ = Z~, ~(co), (36) 

5 d Z~, ~(co) = zP~, ~(co) + ~ Z~; ~ ~ Zr~, ~(co). (37) 

Therefore  the contr ibut ions to the induced magnetic moments  arising from the 
non uniform magnetic field can be written: 

A (m '~)  = z x ,  B(O, t ) ,  + Zx, ,aB(O,  t)a,  

+ Zz, ~avB(0, t)rp~ + " " ", (38) 

A <mi . )  = Za., ~B(O, t). + Zx., ~,B(O, t)a~ 

+ Zz., ~ ,B(0 ,  t),a~ + • • •,  (39) 

etc. 

4 Nuclear magnetic  shielding 

In the presence of an intrinsic magnetic dipole #i  on nucleus I, the opera tor  
- /h~BT~ and a cross term: 

e 2 ~-~ ri~ --  Rt~ 
H(a l )  - ~=1 (A~A~') i ,  Ai~ = e~pv#1p Iri - RI] 3' (40) 

me c2  i= 

add to the Hamil tonian  (1). The opera tor  for the magnetic field of the electrons on 
nucleus I in the absence of external  per turbat ion  is [7]: 

rl - RI 
B~ - ! M~ = BTo, M~ = ]~-__-R~I 3 x pi. (41) 

Cme i = 1 

In non  uniform magnetic fields the per turbed opera tor  is obtained from Eqs. (4) 
and (40): 

B ~  B ~  -~I - ~  -di . . . .  a ~ , , ~ B ( O ,  t ) ~ ,  + • • • a ~  B(0, t) ,  a~, ¢~ B(0, t)~, , (42) 

where, introducing the opera tor  for the electric field of electron i on nucleus I: 

ri - RI 
El = e (43) 

]rl - R~I 3' 
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the operators for the diamagnetic contributions to nuclear shielding are defined: 

-dl  e 
a~l ~ -- 2meC 2 ( r ~ E ~ 6 ~  - r ~ E ~ ) ,  (44) 

i=1 

-d l  e ~ . - ,.., --  r i ~ E ~ ) r ~ ,  (45) a~, t~ 3meC2 ( r ~ z E ~ 6 ~  
i=1 

-d l  e ~ . 
= ,.., - ri,  E~a)r~r,~. (46) 

i=1 

The diamagnetic contributions to the shielding tensors are: 

dI -d l  a,,~r = <a[ a~,~r [a>, (47) 

etc. The paramagnetic contributions are obtained via Eqs. (24), (25) and (41): 

1 20)ja p1 
- ~ 2 - - - 2 ~ ( < a l B ~ = l j > < j [ m a l a > ) = - a ~ , ( o ~ ) ,  (48) 

1 
o'g./~,(og) = - ~ j ~ ,  - -  (49) 

pX 1 
~ot, tl,O(('D) = -- ~ j~#a - -  (50) 

Therefore the magnetic field 
by a non-uniform magnetic field is: 

A (BT;> = - a~B(O,  t)~ - a~,p~B(O, t)~p - a~,p~,B(0, t)z~p + - " ,  (51) 

where the total dynamic magnetic shieldings are: 

O./ ((.0) pl dI (52) 

~i (53) o~' e~(o~) = ~p%(~o) + ~,~,~, 

~ (54) ~ ; , ~ ( ~ o )  = ~p%~(~o) + o~,~ .  

20~ja 
ooj~ - 092 ~ ( ( a [ B ~ l j >  <j lmp~la>) ,  

2oJ j .  
o ~  - co 2 ~ l ( < a l B ~ , l j >  <j lmarala> ). 

induced on nucleus I by the electron cloud perturbed 

5 Nuclear electromagnetic shielding and optical rotatory power 

The electric dipole moment induced in the electron cloud by the electromagnetic 
field is [7]: 

+ ~ , p ~ E ( 0 ,  t )~p + - .  • (55) 

+ ~.,/~(0. t), + g..p~B(0, t)~, 

+ g:.,aT~/~(0, t)nra + • • •, (56) 
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where the electric dipole and mixed dipole-quadrupole polarizabilities are: 

1 ~ 20)j. ~((a[#.lj><jl#pla>)=ct.a(co) ' (57) 
~ '~ (~)  = h j a 0)j~a - ~ 

1 20)ja 
~(<al#~,lj> <jl#aela> ), (58) 0~ct'flT((D) ~- h j  a (Dj  2 - -  0)2 

1 20)ja 
~,  a~,(0)) = ~ i~ .  0)i 2 - 0)2 ~(<al  #, I J ) < J l/%~ l a>), (59) 

using the non-traceless form of Eq. (9) for electric multipoles. The optical rotatory 
power is described via the tensors: 

1 2 
~ct, a( 0"))= - h  ~ 2 _0)2J(<alkt, lJ)(J[ma[a))=fc~a(0)) (60) j # a 0)ja 

1 2 
/~at, flT(0)) = - -  ~ 2 2 - -  (D 2 J ( < a l # ~ l j )  <jlmar[a)), (61) j q: a (Dja 

1 2 
t2~,pr~(0)) = - ~ ~ 2 - 0)2 J ( (a [g~l j>( j [mpr~[a>) .  (62) j # a (Dja 

The electric field, induced on nucleus I by the external field via the perturbed 
electron cloud, is: 

<ETa> = - ~,~'pE(o, t)~ + ~ ' ,p~E(o ,  t)~p + ~ , ~ E ( o , '  t )~p  + . - .  

^ I  " + ~a/)(0, t)a + ~ arB(0, t)~a + ~,ar~B(0, t)~p + . . . ,  (63) 

where the nuclear electric shielding tensors [7] are: 

1 20)j, 
7~,a(0))=~ ~ 2---- 2~(<alEY~lJ><Jl#ala>)=Y~a(@, (64) 

j a (-OJa --  0) 

1 2 0 ) j a  . 
~)~t'flT((D) = -~ j ~ a  0)j2 __ 0)2 ~ ( <a lET~ , l j>  <dl~avla>) (65)  

1 20)j~ 
= ~ 2 - - - -  2 ~(<alE~lj> <jl#ar~la>), (66) 

~ , ~ ( 0 ) )  ~ ~ ~ 0 )~  - 0) 

and the electromagnetic shielding tensors, related to vibrational circular dichroism 
[7], are: 

¢-~,a(0)) = 1 ~ 2 
- - - ~ j  a(Dj2a-- 0)~J((alE~lj>(jlmala>)=~a(0)), (67) 

¢̂ ~. a~ (0)) = 1 ¢~ 2 j((a[E~[j>(j[ma~]a>), (68) 
- h ~  ~ 0)~a - -  0)2 

1 2 
~'I, fl76(0)) = --  -~ jZ#a (Dj 2a --  0)~ t~ ((alE~[j > ( j[mar a [ a)) .  (69) 
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The various quantities are connected and satisfy a series of sum rules which can be 
easily proven via off-diagonal hypervirial relations [7]: 

e 2 N 

~:~,¢,(co) = - - -  ~o -2 ~ Zt  EL, as(co) - L,p,(o)], (70) 
r/'/e I =  1 

N 2 
Z,e~(0)~, ¢ ~ -  3 c e ~ p z ( a l l ~ l a ) ,  (71) 

I = 1  

N 2meC X p(c°),, ~. (72) 
Z Z I g ~ l ~ ' R l / ~ I ( ( ' ° ) ~ ' , &  = 7 -  

1 = 1  

6 Origin dependence of magnetic properties 

The definition of some molecular tensors introduced in the previous sections 
depends on the origin of the coordinate system. Thus in a change of origin: 

r" = r' + d, (73) 

the diamagnetic contributions to the dipole-quadrupole magnetic susceptibilities 
transform: 

d tt d t 2 d t e 

X~;a( r ) = Z~;a(r ) - 6meC 2 Z~(r )da + - -  

x [ 2 ( ( a l # ~ a ( r ' ) l a ) d ~  + ( a l p a ~ ( r ' ) l a ) d  ~ 

- 2 ( a l # a v ( r ' ) l a ) d , 6 ~  ) 

- ( ( a l l ~ , ( r ' ) l a ) d ~  + ( a l l ~ ( r ' ) a ) d ,  

- 2 ( a [ # v ( r ' ) l a ) f , d ~ ) d  a 

+ ((a] #a(r')] a )  + neda)(d 2 6 ~  - d,d~)].  (74) 

The corresponding transformation of static paramagnetic contributions is ob- 
tained from the origin dependence of the magnetic moments:. 

e 
mr(r" ) = m~(r') + ~ ~ u d ~ P ~ ,  (75) 

e n 
m'a(r") = m'a(r') + ~ ,~1 [p, (r¢  - r'a) + (r a - r'a)p,3ie.,~d ~ 

e n e 
+ ~ i~1 [(r~ -- r¢)p,]i  e.~,d a - ~ e.~odad~P~. (76) 

Accordingly: 

p tt 
Zr,.a(r ) = Z p .a(r') + d l  + d2  + d3  + d 4  + d5  + ~'6 + tiT, (77) 
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where the various terms are 

e 2 
~1 = 2meC h j~a ~J~ ~((alm~a(r')l  j ) ( j IP~la))e~x.dz 

e 
= ~ ((al#~(r')la)dvS~ - ( a l # ~ ( r ' ) l a )  d~) (78) 

e 2 
d2 = 6mech ,~a ~ 

× ~ ( ( a  ,~1 [p~(rp-r'p) + (r,-r'~)p~]i j ) ( j  lmv(r')la))e~.,d. 

1 

e 
+ 3--~c2((al#~(r')la)d.5~ - (al#~p(r')la)d~) (79) 

e2 ~ 2 ~ ( < a ~ [ p ~ ( r ~ _ r , ) + ( r ~ _ r , p ) p ~ ] , j >  
d3 - 12m-~c2h J coj-~ ~= 1 

× ( J  IP. la)  ) e=.~erxu d.dx 

e 
- 6mec2(al#~(r')la>(d2cS~v -d~dv) (80) 

e 2 
d4 = 3meCh j ~  ~'~ja 

2 p t = - ~;(.v(r )d a (81) 

_ E 2 _  
~ ' s  6m2  C2~ j ~ a ('Oja 

x ~ (  ( al,~= 1 [(r.-r'~)po]i j ) ( j  lPula))e~.oe,xudadz 

e 
- 6mec 2 ((al#~(r')la)d~ - (al#.(r')la)dv6~r)da, (82) 

e y, 2 

e 
- 6meC 2 ((al#~(r')Ja)d r - (a [# . ( r ' ) [a )  d.5~,)da (83) 

e 2 2 
~¢7 -- 6m2c2h ~ ~-~, ~l((alPa[j ) ( j  ]P.la))e..aevz. dpdxd. 

j ~  a ja 

e 2 
- 6meC 2 nd¢ (d~ 5~ - d~ d v). (84) 
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In these identities the expressions on the r.h.s, are obtained via off-diagonal 
hypervirial relations [7] involving #~, P~, L,,  etc., and: 

ime 
2rk# Pk~ ---- rk# Pk~ "}- Pk~ rkp d- ih 6#~ = e~#~ lk~ q- --~- [H0, rk# rk~ ]. (85) 

They hold only if I a )  and I J ) are the exact eigenstates to a model Hamiltonian [7]. 
For instance, they are identically satisfied for true Hartree-Fock wavefunctions. 
Actual calculations relying on the algebraic approximation fulfill the hypervirial 
constraints to a satisfactory degree if good quality basis sets are adopted [18]. 
From Eqs. (74-84) one eventually finds the formula for the origin dependence of 
total mixed dipole-quadrupole magnetic susceptibility in the static case: 

1 Z~. ~p (r") = ;~, ~p (r') -- ;G~ 6~ + ~ ;G~ d~ d~p. (86) 

The origin dependence of the diamagnetic contribution to nuclear magnetic 
shielding provided by electron magnetic quadrupole terms is given by: 

o.dl [r l t~ o.dl LF~'~ 2 dl t 

e I n + ~ ((alEl~la)dvr,~ - (alET~la)d,)dp 

-(al ia= 1 (r,a-r'p)E~v a}d~6,~ 
' ) 1  + a (r ia--ra)E1,  a d~ , (87) 

i=1 

and for the static paramagnetic contributions, 
pl / nx pl r ~r~.~ptr ) = cr~,~p(r ) + ~1 + ~2 + ~a ,  (88) 

where 

e 
~ 1 -  6~eChj~a+~((alBT, Ij)  

x ( j  i=1~ [P'(r'--r'~)+(ra--r'p)P']' a))  e~'~d" 

1 1  I e l (  ~ r~#)Eiiv ) (ar~ d a a - = - - arvd~f,p) + 3--~eC 2 (rlp a d~6,r 
i=1 

- - (a  ,~=1 (r,p-r'p)E,~ a )d , l  , (89, 

~ 2  -- 3meche J~a-~i ~((alB~'rlJ ) ( J  i=~ [(r~-r'~)P~]' 
2 ~pl[~t~ 

= - ~- ~ . ~ .  j d ¢ ,  ( 9 0 )  

e 

~3 -- 3mech~a ~((alB~lj ) ( j  IP~la))~d~d~ 
e 

- 3meCZ((alET~la)d~5"~, - (alET, la)dr)d ~. (91) 
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The identities on the r.h.s, are, also in this case, satisfied for exact eigenstates to any 
model Hamiltonian. 

Therefore the total magnetic quadrupole contribution to static magnetic shield- 
ing depends on the origin according to: 

i ,, i , i d# + i i a r ,~( r  ) = o-r,~(r ) - ar~ ~a~ d~6~. (92) 

Similar equations are found for electron magnetic quadrupole contribution to the 
optical rotatory power. For any frequency co: 

gcr.,a(r") = gcr,~a(r') + cgl + (~°2 "[- (~3, (93) 

where 

e 2 ( 
6meCh j~a COj2a _ ~ 2  j <al#rlj > 

x ( j  i=l~ [-P~(ra--r'~)+(ra--r'~)Pa]i a ) )  e~'6d" 

1 
- - -  r '  e~ ,~  d , ,  = ½l-~r~(r') d ~ a  gcr~(r')da] + 3c ~r'a~( ) 

e 2 
~2 = 3meCh j~a ~j2a -- c02 

= -- ]gcr,(r')dt~ , 

(94) 

(95) 

e 2 
cg3 - 3rneCh j ~"~a COj2a --OOZ J ( ( a[#~l j ) ( j  IP6la ) ) e~6dad~ 

1 
- 3c ~ e'~6 dp d~. (96) 

Thus the origin dependence of the magnetic quadrupole contribution to the optical 
rotatory power is obtained from: 

1 1 
3c ~ e ~ d ~ d p  + 3c ~ , p ~ ( r ' ) ~  d~. (97) 

For the electromagnetic shielding: 

^ I  r! ^ I  ! = ~ , ~ p ( r  ) + + + ~,~a(r ) ~1 ~2 ~3,  

e 2 { 
@1 - 6n~ch j~a coj~_o92 J (,alETvlj ) 

1 ^ I  r 1 I r 
= ~ E ~ ( r  ) a~6~p - ~(r')dp3 + ~ ~,~(r )8~ d~ 

(98) 

(99) 
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~2 -- 3 m e C h  j ~ a  ('Oj 2 i= 1 --692~ (a lETr l j )  j 
^I ,' = -  ¢~,(r ) dp, 

e 2 
~3 - 3mech j~a__ (2") j 2 - -  0 )̀2 J ( ( alETr l j ) ( j [ P6 l a ) ) e ~  d a d, 

= 17~ae~,adpd ,. (101) 
3c 

Therefore the origin dependence for the magnetic quadrupole contribution to 
electromagnetic shielding is given by: 

^ I  it ~ I  p ~ I  t 1 ^ I  t ~ ( r  )d66~a ~ ( r  ) dp ~,~p(r  ) - ~r,,p(r ) =  + 

1 I 1 I + ~cy~,~e~d~d ~ + ~?~,p~(r')e~ d~. (102) 
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(100) 

7 Conclusions 

A series of tensors describing the linear response of a molecule in non-uniform 
magnetic field has been defined, consistent with the Bloch [9] interaction Hamil- 
tonian. Contributions arising from magnetic multipole moments of the electron 
distribution to magnetic susceptibility, nuclear magnetic shielding, optical rotatory 
power and nuclear electromagnetic shielding can be rationalized accordingly. On 
a macroscopic level, the effects associated with higher multipoles are small, for 
instance, the magnetic quadrupole contribution to NMR chemical shifts, compare 
for Eqs. (45) and (49), is ~ 1 x 10-14 cm in the Gaussian system of units. Therefore 
detecting and measuring these tiny contributions would seem out of reach with 
present experimental set-ups, due to the difficulties of constructing magnets with 
very high gradient. An ideal experiment can be conceived, in which the magnetic 
equivalence of nuclei (say, protons in a single, fixed benzene molecule) in ordinary 
NMR experiments, using spatially uniform magnetic fields, would be removed in the 
presence of field gradient. In practice, the NMR spectrum of an assembly of fixed 
molecules in non uniform fields would contain extremely complicate patterns. On 
a microscopic scale, however; the role of magnetic multipoles beyond the magnetic 
dipole cannot be dismissed, as they lead to observable pseudo-contact shifts [17]. 
The effect of distant charge distributions on the magnetic shielding of a nucleus can 
therefore be analyzed in terms of the molecular tensors introduced in this paper. 

Eventually, an efficient computational strategy for the ab initio determination 
of the various tensors defined in the present study has been devised according to 
the coupled Hartree-Fock and random-phase approximation techniques pre- 
viously developed and implemented within the SYSMO suite of computer pro- 
grams [18, 19]. Numerical studies on water molecule have been undertaken [20]. 

Appendix: the Bloch potentials 

The MacLaurin series for the magnetic field: 

B(r, t)~ - k=o ~ r ~ r ~ . . ,  r~B(O, t ) ~  ~. . .~ ,  (103) 
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and for the electric field: 

E(r, t)~ = ~. r~, r~ : . . ,  r~E(O, t ) ~  .. . . .  ~ ,  (104) 
k = O  

where partial derivatives with respect to coordinates, taken at the origin, are 
denoted by: 

- F ~k B(r' t)~ 1 
B(0, t)=~=,_,...=,~ LOr~k~ ~ ( ( tgr~, r = O '  (105) 

etc., are not compatible with the analogous power expansions for the vector and 
scalar potentials: 

1 (106) A(r, t)~ = ~ . r ~ , r ~ . . .  r~A(O,t)~_~.. .~,~, 
k=O 

1 (107) ~b(r, t)~ = c~(O, t) + ~. r ~ , r ~ . . ,  r~c~(O, t ) ~  . . . . .  ~1, 
k = l  • 

using the same notation as in Eq. (105) for derivatives with respect to coordinates 
of the scalar potential, i.e.: 

[ ~k~b(r,t) 1 
O(O,t)~ . . . . . .  = 1 -  Or=kO~_ i  ~ ~ " cOr= 1 ,=o" (108) 

In fact, Eqs. (106) and (107) do not satisfy the equations for the fields: 

B(r, t)~ = e~vA(r ,  t)pv, (109) 

E(r, t)~ = - ~(r, t)~ - 1A(r,  t)~, (110) 
C 

therefore, following Bloch [9], we carry out a gauge transformation: 

A,--} Af = A, + f L  f f  -- 

where the gauge function is: 

f~(r ,  t) = - 

so that, using Eqs. (109) and 

= 

C 

r~A(0, t)~_~ ~ 
1 

k = l  k 'T r ~ l r ~ 2  " " " " ' "  ' 

(110), the Bloch potentials are: 

~, k +  1 r~kB(O,t)~ . . . . . .  ~1~, AS(r, t)~ = (k + 2)! e~P~r~r~r~2 " " " 
k=O 

~ b ~ ( r ,  t )  = - -  ~, 1 k=o (k + 1)! r~r~lr~2 " " " r~E(0, t ) ~  . . . . . .  ~,~. 

Within the Bloch gauge: 

AS(r, t)~ = ~ (k + 1)(k + 2) 
k=O (k + 3)! e~#rr~r~r~:.., r~B(O, t ) ~  . . . . . .  ~p .  

(111) 

(112) 

(113) 

(114) 

(115) 

(116) 
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The new potentials (114) and (115) satisfy Eqs. (109) and (110). The Lorentz 
condition is not satisfied by the Bloch potentials, i.e.: 

l q ~  
+ A~ ¢ 0, (117) 

c 

as can be checked by using the Maxwell equation (in the absence of external 
currents): 

1 
e,a~Bar = - /~, ,  (118) 

c 

in Eqs. (115) and (116). However, owing to Eq. (118), for a static electric field 
one has: 

A,~ = 0, (119) 

analogous to the condition for the Coulomb gauge A,, = 0 in time independent 
uniform magnetic fields. 
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